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A Comparison of Staggered-Mesh Lagrange Plus Remap and
Cell-Centered Direct Eulerian Godunov Schemes for
Eulerian Shock Hydrodynamics

Richard B. Pember, Robert W. Anderson
Lawrence Livermore National Laboratory

We present a comparison of two algorithms for solving the equations of unsteady inviscid
compressible flow in an Fulerian frame. The first algorithm is a staggered grid Lagrange
plus remap scheme. The Lagrange step in this method is a time-centered version of the
scheme due to Tipton, while the remap step employs a variant of the corner transport up-
wind scheme due to Colella. The second algorithm s a spatially operator-split version of
the higher-order Godunov scheme for gas dynamics due to Colella. We use the two methods
to compute solutions to a number of one- and two-dimensional problems. Our results show
the accuracy and performance of the two schemes to be generally equivalent. In a 1984 sur-
vey paper by Woodward and Colella, staggered grid, Lagrange plus remap, artificial viscosity
schemes did not compare favorably with cell-centered direct Eulerian higher-order Godunov
methods. We examine, therefore, how certain features of the staggered grid scheme discussed
here contribute to its improved accuracy. We show in particular that the improved accuracy
of the present scheme is due in part to the use of a monotonic artificial viscosity in the
Lagrange step and the use of an tmproved upwind method in the remap step.

Introduction

Shock capturing methods have always played a central role in the computational mod-
eling of compressible flows. Consequently there has always been interest in assessing the
relative accuracy amd performance of the various algorithms employed in the field. Sixteen
years ago there appeared one such assessment in a review article by Woodward and Colella
(1984). They compare three general methodologies — namely, the Godunov, the artificial
viscosity, and the linear hybridization approaches — and six particular methods for modeling
compressible flow in an Eulerian frame. The methods are assessed from an examination of
the computational results for a series of one- and two-dimensional problems characterized
by strong shocks.

The methods examined by Woodward and Colella (1984) include a direct Eulerian ver-
sion of the piecewise-parabolic method (PPM), the MUSCL scheme of van Leer, and BBC,
a staggered grid, Lagrange plus remap scheme with a von Neumann-Richtmyer artificial vis-
cosity. The conclusions include a ranking of the accuracy of the schemes in which PPM is
ranked first, MUSCL second, and BBC fourth. Although it was not the intent of the authors,
the reader is left with an impression of the superiority of higher-order upwind methods and
the inferiority of artificial viscosity schemes.

Although it has fallen out of general usage for Eulerian calculations in the intervening
years, the staggered grid, artificial viscosity Lagrange plus remap approach remains impor-
tant in the context of arbitrary Lagrangian-Eulerian (ALE) methods. (See papers by Benson
(1992) and Hirt et al. (1974) for general discussions of ALE methodologies and by Darlington
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et al. (1999), Peterkin et al. (1998), Shestakov et al. (2000) and Smith (1999) for recent ap-
plications.) In the setting of gas dynamics, the ALE formulation of the governing equations
describes the evolution of a compressible flow on a grid moving with an arbitrary velocity.
There are essentially two approaches to solving the ALE equations: an unsplit approach in
which the grid motion and the evolution of the fluid are considered simultaneously, and a
split approach. The split approach consists of three steps: a Lagrange step, a grid motion
step in which the Lagrangian grid is modified, if necessary, to reduce grid distortion, and a
remap step in which the solution at the end of the Lagrangian step is conservatively inter-
polated onto the modified grid via an advection scheme. See Benson (1992) and Darlington
et al. (2000) for discussions on the relative merits of the unsplit and the split approaches.

Motivated by its importance in the context of split ALE schemes, in this paper we
reexamine the comparison of the staggered grid, artificial viscosity Lagrange plus remap
approach with the direct Eulerian, higher-order Godunov methodology in the context of
single fluid gas dynamics. The remainder of the paper will be organized as follows.

After briefly reviewing the equations of gas dynamics, we formulate and discuss the
staggered grid Lagrange plus remap scheme. The Lagrange step uses a standard approach,
namely, a predictor-corrector formulation in which the flow variables are not staggered in time
and which otherwise follows the scheme due to Tipton (1990). In particular, it employs the
spatial discretization of HEMP (Wilkins, 1964; Wilkins 1999), a multidimensional extension
of the scalar monotonic artificial viscosity due to Christensen (1990), and a momentum
conserving variation of the simple kinematic hourglass filter due to Margolin and Pyun
(1987). The advection step uses a variation of the corner transport upwind method of
Colella (1990) as formulated for moving quadrilateral grids (Bell et al., 1989). (Jun (2000)
has applied the corner transport upwind scheme in a remap step as well.)

We next review the second algorithm, a spatially split version of the higher-order Go-
dunov scheme due to Colella (Colella et al., 1993; Pember et al., 1996; Miller and Puckett,
1996). This method employs piecewise linear cell profiles which use a fourth-order ap-
proximation to the spatial derivatives (Colella, 1985), an approximate Riemann solver, and
two additional dissipation mechanisms, a Lapidus artificial viscosity and a slope flattening
technique (Colella and Woodward, 1984). The approximate Riemann solver is a linearized
Riemann solver (Roe, 1981) with a special treatment for rarefactions (Colella et al., 1993;
Colella and Puckett, 1997).

We then use the two methods to compute solutions to a number of one- and two-
dimensional problems. (We will refer to the two methods as the Lagrange plus remap scheme
and the higher-order Godunov scheme.) Our test problems include two of the problems ex-
amined by Woodward and Colella (1984), the interacting blast wave and the double Mach
reflection of a strong shock. We also examine a number of additional problems, namely, the
planar Noh problem, the cylindrical Sedov problem, a refraction of an oblique shock at a
density interface, and the LeBlanc shock tube. Our results demonstrate that the accuracy of
the two schemes is generally equivalent, each scheme displaying both relative strengths and
weaknesses. The results show in particular that the improved accuracy of the present La-
grange plus remap scheme relative to BBC is due in part to the use of an improved artificial
viscosity in the Lagrange step and an improved upwind method in the remap step.



Governing equations

The equations of single fluid gas dynamics can be expressed in either of two equiva-
lent formulations, the conservative and the material derivative forms. In two dimensional
rectangular coordinates, the conservative formulation of the equations is

oU | OF(U) , 9G(V)

— =0 1
ot ox oy (1)
where
p ,2ou pvU
| pu o pu” +p _ puv
U= pU ’ F(U) - PUV ’ G(U) - p’l)2 +p )
pE puE + pu pvE + pv

and E = 15 (u? 4+ v?) + e. The corresponding material derivative formulation is
g

Dp

= —pV- 2
Dt pV -U (2)
DU
PE = —Vp (3)
De p D (1
= = Ey.yp=-—=—1|(2 4
Dt ,0V u Dt (p)p (4)

where U = (u,v)”. In either formulation, p is defined by the equation of state p = p (p, €).
For all examples considered in this paper, p is given by the polytropic equation of state

p=(y—1)pe.

Lagrange Plus Remap Scheme

In this section we present the Lagrange plus remap scheme for solving the material deriva-
tive formulation of the Euler equations, (2)-(4), in two-dimensional rectangular coordinates.
The method is an operator split scheme in that it consists of two distinct steps, the Lagrange
step and the remap step. During a single time step the equations of gas dynamics are first
advanced to the new time on a grid that moves with the fluid. The solution on this grid is
then remapped via an advection over a pseudo-timestep during which the grid returns to its
original configuration.

We solve the equations on a structured grid of quadrilateral cells. The flow variables are
staggered: p and e are cell-centered quantities while U = (u,v) is node-centered. The grid
itself is defined by the positions X = (z,y) of the nodes. V' denotes the cell area; see Figure
1. We use the following indexing convention. The cells themselves are indexed as i, j, the
four nodes as i + 5, j £+ 15, and the four bounding faces as i + 5, j and 4, j £ .

Let Lfég and Lyemqp denote the numerical solution operators for the Lagrange and the
remap steps. (Note that there is no time increment associated with the remap step.) The
overall method used to advance the numerical solution U" from time t" to "1 = " + At"
is then

n+1l __ YANALE 3¢7)
U™ = Lyemap L5 U™,



=), U=(uy)

e P&V

Figure 1: Staggered grid representation of the flow variables.

The stability restriction on the numerical method is a cumulative restriction resulting from
an application of the Courant-Friedrichs-Lewy (CFL) condition in each sweep, i.e.,

At = min (At} Aty »

remap
where
n i n - Li,j
At},, = omin —~, At/ .. = omin , , (5)
1 L. 1
7 G 7 max Uiy, jay,

li; is a measure of the shortest distance across cell ¢j, ¢ is the sound speed, and the CFL
number o is a positive constant, o < 1. (Note that even though there is no time step
associated with the remap step, it still imposes a restriction on the maximum size of At".
The restriction At™ < Aty ., is equivalent to the restriction that each cell at the end of the
Lagrange step have some intersection with itself in the original grid. This restriction can be
relaxed with subcycling of the remap step.)

Although the overall method is a fractional step scheme, we note that it is unnecessary
to use Strang splitting (Crandall and Majda, 1980; Strang, 1968) (i.e., to alternate the order
of the Lagrange and remap steps) to achieve second order accuracy because the remap step
can simply be considered an interpolation from the grid at the end of the Lagrange step onto
the original grid.

We now describe each of the two steps in more detail. The Lagrange step uses a predictor-
corrector formulation in which the flow variables are not staggered in time and which oth-
erwise follows the scheme due to Tipton (1990). The scheme uses a multidimensional form
of the scalar monotonic artificial viscosity due to Christensen (1990). In this approach, the
artificial viscosity ¢ is a cell-centered quantity that acts in the same manner as pressure. In
one space dimension, this viscosity is given by

= { pi | Aui| (cq |Au;| (1 — ¢?) + crei (1= @) Au; <0 (6)

0 otherwise
where Au; = u;4y, — u,;_y, and

¢; = max (0,min (1,2R;41,2R;_1, .5 (Ri11 + Ri—1))) ,
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where R;+1 = Au;i1/Au;. When ¢ = 0, the viscosity reduces to the viscosity due to Landshoff
(1955) and Noh (1956), often called the standard Lagrange viscosity. c¢g and ¢y, are constants
that are generally set to .25 (y+ 1) and .5 for polytropic gases (Benson, 1992). The effect
of the limiters 1 — ¢ and 1 — ¢? is to reduce the viscosity in regions with moderate velocity
gradients, and thereby reduce the numerical diffusion of the scheme. We refer the reader to
Wilkins (1999) for one extension of this viscosity to multiple dimensions.

A momentum conserving variation of the simple kinematic hourglass filter presented by
Margolin and Pyun (1987) is also employed to remove hourglass modes from the velocity
field. The use of the hourglass filter to modify the velocity in turn requires that the internal
energy update account for the loss of kinetic energy in the application of the filter. The use
of an hourglass filter and an artificial viscosity imply that we effectively solve modified forms
of the momentum and energy equations,

DU

pﬁ = =V (p+4q) + panc (7)
De + . D (1 :
o = —Z%V-UJreHG:—E (;) (p+q) + éne, (8)

where agye and égg refer to the acceleration and the heating due to the hourglass filter. ayg
is defined so that the integral of pays over the computational domain is zero.

The Lagrange step also uses the spatial discretization of HEMP (Wilkins, 1964; Wilkins,
1999). For gas dynamics, this primarily effects the definition of the mass of a node and of the
control volume used to formulate a conservative differencing scheme for momentum. Figure
2 shows four computational cells — A, B,C, D — and the nine nodes associated with them.
In the HEMP discretization, the mass of node 0 is defined by

mo = (paVa+ psVe + pcVe + ppVb) /2,

and the associated force control volume is defined as the quadrilateral 1357 (Wilkins, 1964;
Wilkins, 1999) . (We use the notation p1ps-..p, to denote the n-gon with vertices p1, p2, -.., Pn
for n > 3. For n = 2, we use it to denote a line segment.) This choice of mass and force
control volume would seemingly result in a non-conservative discretization of the momentum
equation. The reason why the discretization is nevertheless conservative is that an equivalent
control volume is the octagon abcde f gh, where b, d, f, and h are the midpoints of segments
50, 70, 03, and 01, and a, ¢, e, and ¢ are points interior to cells A, B, C, and D. The
corresponding mass for this control volume is

mo = (paVa + psVe + pcVe + ppVp) /4. 9)

By Green’s theorem,

/ V(p+Q)dV=/ (p + q) nds,
abede f gh O(abcdefgh)

where n is the outward facing normal and dV and ds are the standard area and length
measures. HEMP uses constant pressure elements, i.e., the pressure is assumed to be constant
in each cell. Using the fact that [ nds = 0 over a closed curve, we see that

(p+q)nds = / (p + q) nds.

/<9(abcdef_gh) a(bdrh)



The semi-discrete form of the velocity update is then given by

bu [ w+onds+n
mo— = nas moa .
th a(m)p q 00HG

Multiplying both sides by two, we obtain the usual semi-discrete form of the HEMP mo-
mentum update:

my—— = + q) nds + mpapng,
th /a(m)(P Q) 00HG

or

mg 1357)

We note that given (9), the cell-centered kinetic and total energy are defined by

key; = 1y Z o (u2 + Uz) and E;; = e;; + kejj,

nodes of 77
respectively.
4 3
B A2
b “a
5 d (6] h 1
f 9
6 c b 8
7

Figure 2: Derivation of control volume for node 0.

The Heun (modified trapezoidal) method is used as the basic predictor-corrector scheme
to solve equations (2), (7), and (8). In the predictor, we compute predicted values of
p,Ue, X, and V at time n + 1. In the corrector, we use the predicted values to form
time-centered source terms with which we compute the solution at time n. We use the su-

perscript n + 1, p to denote the predicted values. The predictor-corrector scheme has the
following steps:

1. Compute a™ using time n values and equation (10).

2. Compute the predicted velocity:

n+17p — n n
Ui+1/2,j+1/2 - Ui+1/2,j+1/2 + AmiJrl/z,j#/z-

3. Compute the predicted node positions:

+1, _ n n +17
ZL+1/2§+1/2 - Xi+1/2=j+1/2 +.5At (Ui+1/2’j+1/2 + UZ'I/Q’;J"']/?) ’



4. Compute the predicted zone volumes Vi?H’p .

5. Compute the predicted densities:
+1, +1,
P = VIV,
6. Compute the predicted internal energy

G:L]_Hm - (pz] + qu) (1/pn+1’p l/p?.]) + Ate?{G,zy

7. Compute a1 using time n values for ¢, predicted values for other quantities, and
equation (10).

8. Compute the new velocity:

n+ n n n+1,p
U 1/2 Jj+h = U’i+1/2,j+1/2 + .5At (a"i+1/2,j+1/2 + a'i+1/2,j+1/2) :
9. Compute the new node positions:

XTI iy = Xl sy, + BAL (Uir-bf—l/z,j-f'l/z + U 1/2;+1/2)

10. Compute the new zone volumes V;?H.
11. Compute the new densities:

P = Vi Vi

12. Compute the new internal energy

et = el — (a4 5 (o + i) (/o5 = 1/60,) +
.5At (eHG,U + et ) :

In the remap step we use a conservative advection scheme to interpolate the solution
obtained above from the grid defined by X™*! onto the original grid defined by X". We
formulate this interpolation as an initial value problem in which we solve

ow/or =0 (11)

on a moving grid. w and 7 denote an arbitrary scalar quantity defined on the grid and a
pseudo-time, respectively. At 7 = 0, w is defined by its value at the end of the Lagrange step.
We integrate (11) from 7 = 0 to 7 = 74. Over this time, the grid moves from z°¢ = X" to

z"@ = X". The grid velocity is defined by s = (w"e“’ — "ld) /7;. We now transform (11)
to index space coordinates (£,1) = (i, j) and thereby obtain the equation

oJw 0 0
=~ (nf. — —(n". — 12
o " % (n sw) o (n"-sw) =0 (12)



where

J = Teyn — Yey, nt = (yn’ _xn)’ n' = (_yE’ xﬁ)-

We now solve (12) with a conservative difference scheme.

In order to ensure freestream preservation the fluxes used in the conservative difference
scheme must be formulated as products of edge values and either transport volumes (in the
case of density) or transport masses (in the case of all other quantities) (Benson, 1992a).
The transport volume associated with an edge is the signed quadrilateral formed by the old
and the new edges. In Figure 3, the arrows point from the old grid to the new grid. A, B,
G, and H represent positive transport volumes while C, D, E, and F represent negative ones.
More precisely, transport volumes do are defined by

00ig = -5 (@8 s — T ) (V0 sy — YRS )
(7 i — x?-iqll/;,j-f-l/z)(ywl/w-i—]/z viehion))

60ig, = -5 (@1 gy — 28 ) WY s — YIS ) —
(x;')l—dl/z,j#/z - x?j‘l‘/;,”%)(yz Yo+ — yzq-ll-dl/z,j-i—lb)) .

Volume fluxes are then defined by Fi,y, ; = —do; 1, ; and Fj ;14 = —00, j4y,, i-e.,

‘/i;.lew = ‘/Zgld + (E7V27j - E+1/2).]) + ('P‘i)jfl/Q - Eaj+y2)'
Transport masses for cell-centered quantities can be defined by the product of the density
and the transport volume at an edge:

6mi+1/2,j = pi+1/2,j60i+1/2,j’ 6mi,j+1/2 = pi,j+1/2(50i,j+1/2' (13)

Mass fluxes are defined by Fj v, ; = —dm, v, ; and F; jy, = —om, jy,, ie.,
m:;ew = mzojld + (F;_l/2zj - F;+1/25]) + (F;aj_l/2 - F;;]+1/2)’

where m;; = p;;V;; is the mass of cell 7j.

The control volume for momentum remap is considered a logical rectangle; for node 0 in
Figure 2, the control volume is acef. The four bounding faces of the control volume asso-
ciated with the node at (i + 1,7 + /) are indexed as (i,5 + 1), (i + 1,7 + V),(2 + o, 7),
and (i + 1,7 +1). The transport masses for these faces are given by

Sty = Y (O iy, + Mgyt + Oy + G )
omisy, = Y (5mz‘+1/z,j +OMigy i1 + OMy_y, 5+ 5mz’—1/2,j+1) : (14)

These definitions of transport mass are necessary for freestream preservation of velocity given
the definition of nodal mass (9) in the HEMP discretization.
The remap algorithm can now be summarized as follows:

1. Compute transport volumes at all edges.

2. Compute densities at all edges.



edgei,j+1/2

edgei+1/2)

edgei,j-1/2

Figure 3: Illustration of transport volumes.

. Compute transport masses using (13) and (14).
. Remap density by
Vi = Vi " + (Figpy — Frang) + (Fijoy — Fijon)

where

Fiypg = —Pir1hi00isth5 Fijiyy = —Piji1p00554y,.
. Remap w = u,v by
new new _ old old
Ml jthWitlojtle = MitlhjihWithyjti T
(Fi,j-l—l/z - Fi+1,j+1/2) + (Fi+1/2J - Fi+1/2,j+1)
where

o nodal ] . ) nodal
Fijyy = —Wijp,0mi iy, Fipy 5 = —wigy, j0mily, .

. Remap w = ke, e by
i = miu+ (P = Fovng) + (Figon = Figrn)

where

F1i+1/2;j = _wz+1/27.75mz+1/27.7’ F;!J+1/2 = _wz;]+1/25m17]+1/2



7. Enforce conservation of total energy by

e = e+ | kel — s > Up(u? + v | (15)
nodes of 7j

We note that by linearity steps 6 and 7 are equivalent to remapping total energy using
edge internal and kinetic energies to define edge total energies and then computing the
internal energy by subtracting the kinetic energy defined by the remapped velocities from
the remapped total energy.

The remap algorithm described above is independent of the specific manner in which edge
values are computed. We now describe one algorithm for computing these values, the corner
transport upwind algorithm due to Colella (1990) as formulated for moving quadrilateral
grids by Bell et al. (1989). The description applies to both cell-centered and node-centered
control volumes. The algorithm has two basic steps. First, left and right (top and bottom)
states are determined at each &- (n-) edge by a first-order Taylor expansions in space and
time. A unique edge value is then determined by upwinding with —do or —dm. In other
words, if —do or —dm is positive, the left or bottom state is chosen; otherwise, the right or
top state is chosen.

To perform the Taylor expansion we first compute compute van Leer limited (van Leer,
1979) central differences Agw, A,w in &- and 7- directions. In the &- direction, these are
computed by

Agwi; = min (‘Acw ,2 ‘ALw
if AbwARw >0
= 0, otherwise,

,2 rARwD X sgn (Acw)

where Alw = w; —w;_1, ARw = w1 — w;, and A%w = Yo (w11 — wi_1). The states on the
left sides of £- edges are defined by

n
wi—|—1/22,j,L = <U} + 711)5 + TUJ .

ij
Similar expressions can be obtained for the right sides of £- edges and the top and bottom
sides of 7- edges. Using (12) we can express w; in terms of spatial derivatives and obtain

AE  Atnt-s Atn" - s "

it = (o (25427 e, Y
i+, 2 2] 27 .

We evaluate we as Agw/A& and wy, as (wy +1{2 - wf,jfl/z) /An. In the latter expression w;; o,

is determined by performing one-dimensional Taylor expansions in the n direction, i.e.,

» B An  Atn'-s "
Wij+1p,B = (w + (7 Ty ) wn)m



and upwinding the resultant top and bottom edge states.

Higher-order Godunov Scheme

In this section we present the higher-order Godunov scheme due to Colella (Colella et al.,
1993) for solving the conservative formulation of the Euler equations (1) in two-dimensional
rectangular coordinates. Because the method differs from PPM (Colella and Woodward,
1984) in several significant ways, it is presented almost in its entirety.

The overall algorithm is a spatially operator split scheme with Strang splitting (Strang,
1968). We use a uniform computational grid with cell widths Az, Ay indexed by i,5. The
bounding faces of cell i,j are indexed as i & 15, j and 4, j £ 6. The flow variables p, u, v,
and F are all cell-centered. Let L2 and Lﬁt denote the numerical solution operator for the
z-sweep and y- sweeps. The overall method used to advance the numerical solution U™ from
time t" to "t = " + At" is then

Un+1 — Lﬁt”LyAt” U (n even), Un+1 — LyAtnLﬁtnUn (n Odd)

The stability restriction on the numerical method is a cumulative restriction resulting from
an application of the CFL condition in each sweep, i.e.,

At" = min (At;, At;) ,

where

A A
ud , Aty =omin i ,
+cij

At" = omin
v ¥ + " i\]
Cij

2y

n n
Uy ; Yi,j

and o is a positive constant, o < 1.
We now describe the z-sweep in the method; the y-sweep is similar. In the z-sweep, we
solve
oUu N OF(U)
ot ox

In order to formulate the z-sweep, we use the results of a characteristic analysis of the
following quasilinear, non-conservative form of (16):

—0. (16)

— 4+ A(g)=— =0 (17)

where q= (QIa ) (Z5)T = (pauavap: pe)Ta

v p 0 0 O

0 uw 0 1/p O
A@=|0 0 w 0 o[,

0 p 0 u 0

0 ph 0 0 wu

and h = e + p/p is the specific enthalpy.
A thermodynamically redundant set of primitive variables is used in the quasilinear
form so that the numerical fluxes can be computed as simple functions of ¢ requiring no
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equation-of-state evaluations (Colella et al., 1993). Only one equation of state evaluation per
computational cell per fractional step in the higher-order Godunov scheme is then required.
The characteristic analysis of the quasilinear system follows. The eigenvalues of A are

My ds =u—c, u(Xx3), utec (18)
where c is the sound speed. The matrix of right eigenvectors R of A is
R = (ry ry r3 14 T5)
1 1 00 1
—c/p 0 0 0 ¢/p
= 0 010 0 ) (19)
c 000 ¢
h 001 h
The corresponding matrix of left eigenvectors L = R™! is
l 0 —p/(2¢) 0 1/(2¢%) 0
ly 1 0 0 -1/ 0
L= I3 = 0 0 1 0 0 (20)
Ly 0 0 0 -h/Z 1
ls 0 p/(2¢c) 0 1/(2¢%) 0

The algorithm to integrate (16) has four general steps. For simplicity, we let U™ and
U™+ denote the values of U at the beginning and the end of the z-sweep. The index j is
also suppressed. The steps are:

1. Compute monotonicity preserving central difference approximations of Aq in each cell
i, where Ag/Ax is an approximation of dg/0x at the cell center.

n+1/2
Z.‘1‘1/27R,

n+Y%

2. Compute time-centered left and right states, g; ol and ¢ at each z-cell face.

3. Solve the Riemann problem at each cell face with the left and right states computed

in (2) and evaluate that solution along the ray z/t = 0 to obtain q;fl/l/?.

4. Compute U™ by conservative differencing.

In step (1), the I-th component of Ag;, Ag;y, is computed using the approach of Colella
(1985) (the subscript [ is suppressed):
Argi = ¢—gi1
Argi = Giy1— G
Acgi = Yo(Giy1 — Gi—1)
N { 2min (|Arg|, |Argl|), if Apg;Arg >0

0, otherwise
1 if Agg; >0
—1 otherwise

Arg; = smin([Acgi|, Aumai)
Ag = smin([%58c¢ — Yo (Argiv1 + Apgi1)|, Duimti) - (21)
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Slope flattening (Colella, 1989) is used to introduce additional numerical dissipation in the
vicinity of shocks. Ag;, is a van Leer limited (van Leer, 1979) fourth-order approximation of
0q;/0z. Fourth-order slopes are not required for accuracy in the scheme. Their use, however,
does result in sharper representations of discontinuities (Colella, 1985).

We use Taylor’s theorem and equation (17) in the second step to compute left and right
states at each cell face. In computing left (right) states, we use a characteristic projection
operator (Bell et al., 1989) that discards components in the d¢/0x term corresponding to
characteristics which do not originate in the cell to the left (right) of the face. Hence, the
left and the right states are computed by

1 At
q;fl/f,L = g + 1/2k AZ i (1 - A—x)\k’l) (lkyi - Agi) Th
Ak, >
1 At
q?—:_l/ﬁR = Qin—l—l - 1/21C /\Z . (1 + A_x/\k’”l) (lk,i+1 - Agit) Tkyit1-
Akip1<

n+Y%

In step (3), we obtain at each z-cell face an approximate solution, g; e

nt+ls _ ( n+th  nt+th  ntlh  ntd o\ T _
Giry, = (pi+1/22’ Uiy s Uiyt s iyt o (pe)i+1/22) = 4a,

to the Riemann problem with left and right states
1 1
=5 an= a0 (22)

The details of the solution are reviewed below.
The last step uses the Riemann problem solution to conservatively update the value U
at the end of the z-sweep:

At

ntl _ g7 n+Y; n+%
Urtt = U+ (Ff = FIAE) (23)
FZT[/:/Q denotes the evaluation of F(U) using the primitive variables q;leZ. In regions of
convergent flow, an explicit diffusive flux (Colella and Woodward, 1984) is added to the

1
numerical flux FZTE/f in order that a small amount of additional numerical dissipation be

present in the vicinity of shocks.

We now review the approximate Riemann solver (Colella et al., 1993) used to solve the
Riemann problem for gas dynamics in one space dimension defined by the left and right
states given in (22). The solver begins by computing the phase-space solution. The states
at the contact discontinuity, p*, u*, p} &, (pe);, /R v} /R> Are found by applying a variation
of Roe’s approximate Riemann solver (Roe, 1981) to the quasilinear Lagrangian equations,
0q/0t + B(q)dq/0m = 0, where q = (p, u, v, p, pe)T, m is the mass coordinate,

0 2 00 0
0 0 010
Blg) = |0 0 00 0],
0 C2 00 0
0 hp> 0 0 0
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and C = pc. The eigenvalues of B are Aj,...,A\s = —C,0(x3),C. We evaluate the right
eigenvectors of A associated with the eigenvalues of —C and C at ¢y and qg, respectively:
r- = (T—,la tey ’r—,ﬁ) = (_p%a CL) 07 Oa _C%,a _th%)T T
ry = (T—F,l; teey T+,6) = (_p%-{a _CR7 Oa Oa _C%b _th%%) .

The three eigenvectors for the eigenvalue 0 do not contribute to the jumps in u and p. Hence,
the jumps in g can be expressed by

Urp — U, = Q_T_2 + Qi ryo = OZ_CL — O!+CR
— — 2 2
PrR—PrL = Q_T_s5t+oairys = —a_CL - a+CR
* = JR—
4r/Ryi = d4L/Rj + OxTx for ¢; = p, v, pe

Solving for a., we obtain
v = (urCr+urCr+pr—pr)/ (Cr+CL)
P (pLCr +prCL + (ur, — ugr) CrCL) / (Cr + C1)
PL/rR = PL/RT (p* - pL/R) /C%/R
(be)rr = (pe)yr+ (p* - pL/R) hi/r/Cir

*
UrL/r = VL/R-

The second step is to evaluate the physical space solution along the ray =/t = 0 to obtain
gg- We first define

%4 dr,qr Otherwise

- App/py ifu*>0
= ! _
¢nPr/Pr Otherwise

(c*)2 — F*p*/p*

A\ ur, —cp,u* —c* ifu* >0
’ Ug + cgr,u* + ¢ otherwise
s — -1 ifu* >0
1 otherwise.

If p* > p, then the wave separating ¢ and ¢* is a shock. We compute an approximate
Lagrangian shock speed by W = (pc + p*c*) /2. The approximate Eulerian shock speed is
then o = u* + sW/p*. We then set

if soc <0
de = {q*

q* otherwise.

The wave separating g and ¢* is otherwise a rarefaction. We first enforce s\ > sA* by
flooring s as follows: A = smax (s, sA\*). We then set

q if sA<0
= q* if sA* >0
e % otherwise;

14



the last expression uses linear interpolation in the characteristic speed to approximate the
solution inside the rarefaction.

Numerical results

In this section we compare the accuracy and performance of the two methods described
above for a series of test problems. We also examine the effect of changing some of the
algorithmic options and parameters in the Lagrange plus remap scheme. For the Lagrange
step, we compare a number of time centering options: the use of the midpoint method
as the predictor-corrector, the use of an updated ¢ in the corrector, and the forgoing of
the prediction of U in the predictor. We also examine the use of the standard Lagrange
viscosity instead of the monotonic ¢ and the effect of the hourglass filter. For the remap
step, we compare the use of a spatially operator split advection algorithm instead of the
corner transport upwind scheme. We also look at the effect of using different limiters and
consider advecting E directly instead of e and ke. We also explore the effects of relaxing
numerical conservation of F, in particular, using (15) only in the vicinity of a shock or only
if (15) increases e.

For all problems, we use a uniform grid of square cells. The CFL number is .9 unless noted
otherwise. For the Lagrange plus remap scheme we have chosen to disable the hourglass filter
by default.

Interacting blast wave. The flow domain for this one-dimensional problem (Woodward
and Colella, 1984; Christensen, 1990) has length one with reflecting walls at both end. The
gas is polytropic with v = 1.4. At t = 0 the gas is at rest with density 1. The initial pressure
is 1000 in the leftmost tenth of the domain, 100 in the rightmost tenth, and .01 elsewhere.
Initially, two shock waves and two contact discontinuities develop at the initial discontinuities
and propagate towards one another, while two rarefactions develop, propagate towards the
walls, and reflect off them. As time progresses, these six initial waves interact and create
additional contact discontinuities.

Figure 4 displays the density computed by the higher-order Godunov and the Lagrange
plus remap schemes at ¢ = .038 on a 1200 zone domain. To obtain a baseline solution, we
also compute the flow both with a Lagrangian higher-order Godunov method (Saltzmann
and Colella, 1985) and with the staggered grid Lagrange scheme on 3600 zone domains.
The initial zoning for both Lagrangian computations is spatially uniform. The densities at
t = .038 for all four computations are displayed in Figure 4. The two Lagrangian solutions
are virtually indistinguishable and therefore serve as a baseline solution. We note that these
solutions themselves have a flaw, a spurious overshoot at z ~ .765. The magnitude of the
overshoot is the only discernible difference between the two sets of Lagrangian results. This
overshoot has been previously observed (Christensen, 1990).

From Figure 4 we see that the higher-order Godunov scheme better matches the density
peak at x = .75, while the Lagrange plus remap scheme shows a slight overshoot here. On
the other hand the latter shows sharper resolution of the contact discontinuities at x =~ .6
and x =~ .75. The density between z ~ .65 and x ~ .75 also seems to be better represented by
the Lagrange plus remap scheme. We note that the PPM results in (Woodward and Colella,
1984) show much better resolution of the contact discontinuities than the Godunov scheme
used here. The implementation of PPM used for those results includes a contact detection
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and steepening scheme. If that scheme is disabled, the PPM results are essentially the same
as those obtained here (Colella, 2000). Contact detection and steepening is not implemented
in the present scheme because parabolic interpolation appears to be essential to its success.
Moreover, steepening appears to introduce spurious numerical artifacts in multidimensional
calculations.

We next examine the effect of advecting E directly as opposed to advecting e and ke
separately. Note that when FE is advected directly, the remapped value of e is defined as the
difference between E and the kinetic energy found from the remapped velocity. In the upper
plot of Figure 5 we see the results at t = .038 for three Lagrange plus remap calculations.
The first density profile shows the same results displayed in Figure 4. The second profile
plots the density when E' is advected directly. This profile contains a number of noticeable
deficiencies. Woodward and Colella (1984) observed that these deficiencies were due to the
computation of unphysically high densities at early time. They corrected the problem by
using a minmod limiter in the advection step. The third profile show our results for this
strategy. Note that these results are similar to those found with BBC by Woodward and
Colella (1984).

In the lower half of Figure 5, we examine the early time behavior of the two energy remap
approaches employing van Leer limiters. We indeed see that when F is advected directly, the
density at early time is much higher than when e and ke are remapped separately. Moreover,
we see that the problem actually worsens as the CFL number is lowered. We conjecture that
when e and ke are remapped separately, the early time overshoots are reduced because the
effective total energy slopes are limited to a slightly greater amount.

We also consider the effects of different strategies for energy conservation. In Figure
6 we see the results at ¢ = .038 for four Lagrange plus remap calculations, each using a
different strategy. The first strategy is to always conserve E. This is our default strategy,
so the results here are identical to those in Figure 4. The second strategy is to conserve
E only at shocks. This strategy is implemented by using equation (15) only if ¢ exceeds
some threshold. The third strategy is to conserve E only at shocks and only if using (15)
increases the internal energy (Benson, 1992). The last strategy is to conserve E regardless
of the presence of shocks but only if using (15) increases the internal energy. We see very
little difference between the first and the second strategies. With the latter two we see large
errors in the solution, including incorrect shock and contact discontinuity locations.

Double Mach reflection of a strong shock. For this problem (Woodward and Colella,
1984) we use a flow domain of length 3.5 and width 1.0. At ¢ = 0 a Mach 10 planar shock
in a v = 1.4 polytropic gas impinges at an angle of 60° on the lower face of the domain
at a distance of .3 from the left end of the domain. The preshock density and pressure
are 1.4 and 1, respectively. The lower face of the domain is treated as a reflecting wall to
the right of the impingement point; to the left, it is treated as an outflow boundary. (The
initial shock position and the treatment of the lower boundary, which do differ slightly from
those used by Woodward and Colella (1984), were used previously by Pember et al. (1995).)
At the top face we impose inflow boundary conditions matching the exact evolution of the
shock as it traverses the boundary. The other boundary conditions are inflow at the left and
outflow at the right. The flow is self-similar and characterized as follows. The first reflected
shock, the incident shock, and the first Mach stem meet at a triple point. The first contact
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interacting blast wave: rho at t = 0.03800

1200 zones
10 T T T T T
| —— Lagrange plus remap
—— higher—order Godunov
8 - Lagrange only, 3600 zones |
—— higher—order Godunov Lagrange, 3600 zones
6 [ -
4+
2 [
0 [ [
0 0.2 0.4
| —— Lagrange plus remap
gl higher—order Godunov |

Lagrange only, 3600 zones
| — higher—order Godunov Lagrange, 3600 zones

0.55 0.65 0.75 0.85
Figure 4: Computed density at ¢ = .038 for the interacting blast wave problem. The upper
and lower plots show the whole domain and a closeup, respectively.
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interacting blast wave: rho att = 0.03800
1200 zones total on [0,1]

T T
- —— Lagrange plus remap, advect e and ke -
—— Lagrange plus remap, advect E
] Lagrange plus remap, advect E, minmod limiter

''''''''' higher—order Godunov

0.65 0.75
—— Lag+remap, cfl=.9, e and ke advected
—— Lag+remap, cfl=.9, E advected

) Lag+remap, cfl=.25, E advected

[\ —— Lag+remap, cfl=.25, e and ke advecte

[\ | higher—order Godunov

o

t=.00273

0 L 1 L 1 L 1 L
0.15 0.16 0.17 0.18 0.19

Figure 5: The upper plot shows a closeup of the computed density at ¢ = .038 for the
interacting blast wave problem obtained by the Lagrange plus remap scheme with three
variations of energy advection. The lower plot shows a closeup of the density at ¢t = .00273
for two of these. Higher-order Godunov results are shown in both plots for comparison.
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interacting blast wave: rho at t = 0.03800

1200 zones total from x=0to 1

T T T T T T

8 | Lagrange+rema

—— L+R,conserve E at shocks
L+R,conserve E at shock if heating

—— L+R,conserve E if heating

6 L higher—order Godunov

0 L - 1 L 1 L 1 L

0.5 0.6 0.7 0.8 0.9
Figure 6: Four different strategies for energy conservation are compared. Higher-order Go-
dunov results are shown for comparison.

discontinuity extends from this triple point down to the reflecting wall, at which point it is
deflected into a wall jet that flows back towards the Mach stem. The contact discontinuity
and wall jet exhibit small rollups induced by a Kelvin-Helmholtz instability. The wall jet
also displays a larger rollup induced by the presence of the Mach stem. A curved reflected
shock is connected to the first reflected shock. A second weaker Mach stem extends from
this point to the first contact discontinuity. There is also a second slipline attached to this
point which is too weak to appear in our computational results.

We compute the flow on a 1120x320 grid with the two methods. The density at ¢ =
.21 is displayed in Figure 7. The higher-order Godunov scheme is slightly better at both
suppressing oscillations in the postshock region of the left end of the curved reflected shock
and not suppressing the small rollups in the wall jet. The results also show a slightly smaller
rollup of the wall jet just before the Mach stem. The Lagrange plus remap scheme, on the
other, is better at suppressing oscillations in the middle and right sections of the postshock
region of the curved reflected shock. Both schemes exhibit a spurious wave emanating where
the Mach 10 shock intersects the top boundary. This wave, also observed by Woodward and
Colella (1984) is due to the mismatch between the exact and the numerical representations
of the shock outside and inside, respectively, the top boundary. The spurious wave has a
slightly more deleterious effect on the Lagrange plus remap solution. The spurious contour in
the higher-order Godunov results just outside the curved reflected shock at x ~ 1.5, y ~ .5
delimits a small perturbation that is also present in the Lagrange plus remap results but
which does not appear in the plot with our choice of contour levels.

We next explore the effect of three different timstepping options in the Lagrange plus
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Figure 7: Density contours from calculations of a Mach 10 shock propagating in a polytropic
gas (7 = 1.4) at 30° to the vertical impinging on a solid wall. Thirty density contours are
used in each plot. The density contours range from 1.4 to 22.51. The upper plot is computed
with the higher-order Godunov scheme, the lower with the Lagrange plus remap scheme.

remap scheme on the solution. The first option is to recompute ¢ in the corrector, the second
is to forgo velocity prediction in the predictor, and the third is to use the midpoint method as
the predictor-corrector scheme. The density at ¢ = .21 computed with each of these options
is displayed in Figure 8. For the first two options the solutions show no significant differences
with the results in Figure 7. With the midpoint method, however, there are somewhat fewer
oscillations in the density field in the postshock region of the reflected shock.

The effect of the hourglass filter in the Lagrange step on the solution is examined next.
Margolin and Pyun (1987) define a to be one fourth the ratio of the computational time
step to the time needed for the hourglass filter to fully effect the solution. The maximum
stable value of « is .25 because in two dimensions each vertex is shared by four cells. They
found, however, values of o between .01 amd .05 to be sufficient for most problems. The
densities at ¢t = .21 for a = .01, .05, and .25 are displayed in Figure 9. The maximum value
of a completely suppresses the small rollups in the wall jet, while those rollups are only
moderately suppressed with the other two values. The results again otherwise do not differ
significantly from those in Figure 7; note that those results correspond to oo = 0.

We note that that the Kelvin-Helmholtz instability in question is observed neither in
the computational results of Woodward and Colella (1984) nor in the experimental data
reported by Glaz et al. (1985). In the case of the numerical results, the issue was simply
one of resolution. The instability is observed in more highly resolved calculations; see, for
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Figure 8: Density contours computed by the Lagrange plus remap scheme with three different
timestepping options: recomputing ¢ in the corrector step (upper plot), forgoing velocity pre-
diction in the predictor (middle), and using the midpoint method as the predictor-corrector
(lower). The contour scale is the same as in Figure 7.

example, Berger and Colella (1989). The experimental data do not show any small rollups
because the physical viscosity is sufficiently large to suppress them (Colella, 2000). The
physical viscosity is large, in turn, because low pressures (.1 atm or less) and densities are
necessary to generate strong shocks in the laboratory. Higher kinematic viscosities, and
therefore greater dissipation, result.

We also examine the effect of using a spatially operator split advection scheme. We
consider two different formulations. The first uses £énné and néEEn sweep patterns in alternate
timesteps, each sweep taking half a pseudo-timestep. The other alternates 7 and né sweep
patterns, each sweep taking a full pseudo-timestep. The densities at t = .21 computed with
the two approaches are displayed in Figure 10. We again see that the instabilities along the
wall jet are suppressed, although less so with the second approach. The results otherwise do
not differ significantly from those in Figure 7.

We next examine the effect of using the standard Lagrange viscosity. The computed
density at ¢ = .21 is shown in Figure 11. Using the standard Lagrange viscosity results
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Figure 9: Density contours computed by the Lagrange plus remap scheme with three different
values of the hourglass filter parameter a.. The results for « = .01, .05, and .25 are shown in

the top, middle, and bottom plots, respectively. The contour scale is the same as in figure 7.

in a poor representation of the Mach stem extending down from the kink in the reflected
shock. This poor representation is also present in the BBC results reported by Woodward
and Colella (1984) where it is attributed to the linear viscosity term. Otherwise, the results
are again otherwise essentially the same as those in Figure 7.

We finally report some timing results for this problem as run serially on a single processor
on the LLNL Tera cluster, i.e., a single 533 MHz Compaq Alpha processor. The timings
are reported for the integration portion of the codes only; we do not include time to per-
form output, etc. We report serial rather parallel timings because the purpose here is to
compare the efficiency of the underlying algorithms, not their implementations on parallel
architectures. For the Lagrange plus remap run, we used the midpoint rather than the Heun
method for the predictor. However, we made no optimizations to account for the fact that
the grid was comprised of square and not general quadrilaterals. The Lagrange plus remap
scheme took 1591 time steps and 17061 seconds to compute to ¢ = .21. The Lagrange and
remap steps took 4830 and 12330 seconds, respectively. The corresponding times per zone
per time step were 8.47 psec and 21.45 usec. The higher order Godunov run took 1916 time
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Figure 10: Density contours for double Mach reflection problem computed by the Lagrange
plus remap scheme with two spatially operator split advection schemes. The results on top
correspond to alternating Enné and néEn sweep patterns, those on the bottom to £n and né
patterns. The contour scale is the same as in Figure 7.

steps and 12110 seconds to compute to the final time. The time per zone per time step was
17.63 psec. Woodward and Colella reported BBC run times that showed the scheme to be
approximately 4 times faster than PPM. We note, however, that these were reported for
one space dimension only. Moreover, the higher-order Godunov scheme used here is faster
than PPM by virtue of its use of linear rather than parabolic profiles and its lack of contact
steepening. Finally, the Lagrange plus remap run times are comparable to run times we have
seen for implementations of spatially unsplit higher-order Godunov schemes.

Cylindrical Sedov problem. The initial conditions for the cylindrical Sedov problem
(Sedov, 1959) consist of a no flow, uniform density field. The energy is zero everywhere
except at the origin. The flow is self-similar and consists of a cylindrically symmetric wave,
the leading edge of which is a shock of infinite strength. We use a unit square flow domain
to compute the solution on one quadrant. The blast location is at the origin. The blast
energy is 8, 7 = 5/3, and initially p = 1. A specific internal energy of 2/Az? is specified in
the cell adjacent to origin because we compute only one quadrant of the solution.

We compute the solution on 50x50 and 200x 200 grids with both methods. The computed
and exact solutions at ¢ = .1 along the rays x = 0 and z = y are displayed in Figure 12.
On the 50 x 50 grid, the Godunov solution along z = y better matches the exact solution
until » ~ .575 beyond which the Lagrange plus remap solution was the better match. Along
x = 0, both solutions are comparable. On the 200x200 grid there is little difference between
the methods except near the shock. On both grids the Lagrange plus remap solution better
matches the peak density at the shock front.
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Figure 11: Density contours computed by the Lagrange plus remap scheme using the stan-
dard Lagrange viscosity. The contour scale is the same as in Figure 7.

Refraction of an oblique shock wave at a density interface. In this problem we
model a shock (M = 1.89) in a v = 1.4 polytropic gas impinging on a density interface
at an angle of incidence of 58°. The preshock conditions in cgs units are v = v = 0 and
p = 1.01325 x 10%. The preshock densities are 1.223 x 10~ upstream of the interface and
6.243 x 10~% downstream. The postshock conditions are u = 3.862384 x 10*, v = 0, p =
3.0578669 x 1073 and p = 4.0502098 x 10°. The flow domain is 1.12 ¢cm wide by .72 c¢m high.
The initial shock location is .2 cm from the left boundary and the density interface intersects
the lower boundary .0975 cm further to the right. Reflecting wall boundary conditions are
imposed at the upper and lower faces. The other boundary conditions are inflow at the left
and outflow at the right.

This problem is a simplification of one in which a Mach 1.89 shock refracts at an air/SFg
interface (Henderson and Puckett, 1993), the simplification being the treatment of both
gases as polytropic with equal 7’s of 1.4. This refraction is categorized as a Mach-reflection-
refraction (MRR) in the strong incident shock group at a fast-slow gas interface (Abd-El-
Fattah and Henderson, 1978). Even with our simplifying assumptions the flow is still in this
regime. The fast-slow designation implies that the sound speed upstream of the interface is
greater than that downstream. Such refractions are characterized as follows. The incident
shock, a Mach stem, a curved reflecting shock, and a weak contact discontinuity (not visible
in our results) meet at a triple point. The contact extends from the triple point to the
deflected density interface. Upstream of this intersection, the deflected density interface is
characterized by rollups induced by a Kelvin-Helmholtz instability. A transmitted shock
propagates into the denser fluid. The presence of the lower wall induces two additional flow
features: the density interface undergoes rollup and the transmitted shock undergoes direct
Mach reflection.

We compute the flow on a 896x576 grid with the two methods. The density at t =
1.16667 x 107° seconds is displayed in Figure 13. The results mainly differ along the density
interface and near the triple point. The Lagrange plus remap code computes a slightly more
irregular rollup pattern and a slightly faster growth rate of the shear layer than does the
higher-order Godunov code. The Lagrange plus remap algorithm computes a Mach stem
height of .028 cm and an angle between the reflected shock and the Mach stem of 70°. The
higher-order Godunov algorithm computes corresponding values of .019 ¢cm and 60°. Both
codes, however, compute the same location of the Mach stem and the same angle between
the Mach stem and the interface, namely, 78°.
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Figure 12: Computed solutions to the cylindrical Sedov problem.
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Figure 13: Density from calculations of a Mach 1.89 shock in a v = 1.4 polytropic gas
impinging on a density interface at an angle of 58°. The density ranges from .001223 to
.026083. A single contour level shows the position of the curved reflected shock. The upper

plot is computed with the higher-order Godunov scheme, the lower with the Lagrange plus
remap scheme.
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We next look at the effect of both the CFL number o and the use of the hourglass filter.
The upper two plots in Figure 8 show results for both schemes with ¢ = .25. In both cases
the shock and the discontinuity locations are the same as in the o = .9 results, but the
rollups along the density interface are suppressed. The lower two plots show results for the
Lagrange plus remap scheme with the hourglass filter (o = .25) for 0 = .9 and 0 = .25. We
see that the hourglass filter itself only slightly suppresses the rollups. When o = .25, the
rollups are almost entirely suppressed but to no greater extent than with the higher-order
Godunov scheme at the same value of o.
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. . 0.500

0.250 0.250

0‘008.00

G‘ODH 0

0,500 0,500
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0.250 0.250

0.00
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Figure 14: Density for the shock refraction problem. From left to right and then top to
bottom the results were computed with the higher-order Godunov scheme with o = .25, and
the Lagrange plus remap scheme with ¢ = .25, with the hourglass filter on and ¢ = .9, and
with the hourglass filter on and ¢ = .25. The scale is the same as in Figure 13.

We finally examine the effect of two integrator options on the solution. The first option
is to use the spatially operator split advection scheme that alternates £nné and né€n sweep
patterns; the other is to enforce energy conservation only at shocks and only if using (15)
increases e. The results are displayed in Figures 15 and 16. In contrast to the results for
the blast wave and the Mach reflection problems, we see here no major differences with the
results for the standard set of options in Figure 13.

Planar Noh problem. In this one-dimensional problem (Noh, 1987) a v = 5/3 poly-
tropic gas has the initial state (p,u,e) = (1,1,0). At the left and right faces inflow and
reflecting wall boundary conditions are imposed. The solution is a shock of infinite strength
moving with velocity -1.

We first compute the flow on a domain of unit length on a grid of 800 zones with the
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Figure 15: Density contours for the shock refraction problem computed by the Lagrange
plus remap scheme with the option to conserve energy only at shocks and only if using (15)
increases e. The scale is the same as in Figure 13.
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Figure 16: Density contours for shock refraction problem computed by the Lagrange plus
remap scheme with a spatially operator split advection scheme. The scale is the same as in
Figure 13.

28



higher-order Godunov method; see Figures 17 and 18. Without modification, the method
computes the wrong shock speed. There are essentially three modifications one can make
to the method so that it does compute the correct speed: impose the postshock pressure
of 43 at the rightmost cell face, use twice the normal Lapidus viscosity at the right most
cell face (Greenough, 2000), or use an exact Riemann solver for a polytropic gas instead
of the approximate solver; again, see Figures 17 and 18. (The exact solver is exact to the
tolerance of the root finder it employs.) The location of the shock in the exact solution at
this time is z = .7567. All three of these approaches exhibit postshock oscillations. In an
attempt to reduce these, we tried a CFL number o0 = .5 with three approaches: the Lapidus
viscosity boundary modification, the exact Riemann solver, and the exact Riemann solver
with the Lapidus viscosity completely disabled. The last of these shows the least amount of
oscillation in in the postshock region, while the first actually shows more oscillations than
the 0 = .9 case.

We next compute the flow with the Lagrange plus remap scheme using both the mono-
tonic and the standard artificial viscosity; see Figures 19 and 20. For comparison, we include
the higher-order Godunov scheme results computed using the viscosity modification and us-
ing the exact Riemann solver with ¢ = .9, and using the exact Riemann solver with the
Lapidus viscosity completely disabled with ¢ = .5. In the wall region, the Lagrange plus
remap scheme with the monotonic ¢ and the higher-order Godunov scheme with the vis-
cosity modification compute the least amount of wall heating. Not surprisingly, the use of
the standard g results in the largest amount of wall heating. In the postshock region, the
standard ¢ and the o = .5 results show the least amount of oscillation. The higher-order
Godunov scheme with the viscosity modification computes the most, while the other two
schemes are comparable. The solution computed by two exact Riemann solver methods
show the best resolution of the shock. The Lagrange plus remap results show slightly more
spreading of the shock, while the shock speed in the approximate Riemann solver results is
slightly underestimated.

LeBlanc shock tube. In this shock tube problem (Benson, 1992a; LeBlanc) the initial
discontinuity separates a region of very high energy and density from one of low energy
and density. The initial discontinuity is at z = 3. (p, e, u) = (1, .1, 0) for z < 3 and
(.001, 1077, 0) for z > 3. The gas is polytropic with v = 5/3. The solution consists of a
strong rarefaction moving to the left, and a contact discontinuity and a shock moving to the
right.

We compute the flow with both methods on grids of 180 and 1440 zones. For comparison,
we also compute the flow both with a Lagrangian higher-order Godunov method (Saltzmann
and Colella, 1985) and with the staggered grid Lagrange scheme on the same domain. We
also compute the exact solution using the exact Riemann solver mentioned above. The inter-
nal energies for all four methods and both grids as well the exact solution at ¢ = 6 are shown
in Figures 21 and 22. On the 180 zone grid, all four methods have difficulty computing the
position of the shock. The two Lagrangian methods best compute this position, while the two
Eulerian scheme show roughly equal and opposite errors. Both Lagrangian methods, how-
ever, compute large overshoots in the postshock value. The higher-order Godunov method
is best at computing the contact discontinuity, while the Lagrange plus remap scheme is
more successful than the two Lagrangian methods. The two Eulerian methods both com-
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Figure 17: Density at ¢ = 6 for the planar Noh problem at ¢ = .73 on a grid of 800 zones.
Higher-order Godunov results are shown only. The full problem domain and a closeup of the
shock region are shown.

30



4.2

—— h.o.g., pressure bc

4.15 - h.o.g., viscosity bc |
—— h.o.g., exact Riemann solver
"""""""" h.o.g., viscosity bc, cfl=.5

41 - h.o.g., exact solver, cfl=.5
h.o.g., exact, cfl=.5, Lapidus off

4.05 - :: ‘l“.“ | \ \ l‘“‘,“ _

3.95 | | -

3.9 ‘ ‘ ‘ ‘ ‘
0.8 0.82 0.84 0.86

—— h.o.g., pressure bc

h.o.g., viscosity bc
—— h.o.g., exact Riemann solver
"""""""" h.o.g., viscosity bc, cfl=.5
5L h.o.g., exact solver, cfl=.5
h.o.g., exact, cfl=.5, Lapidus off

3 L 1 L 1 L 1 L 1 L
0.98 0.985 0.99 0.995 1 1.005

Figure 18: Density at ¢ = 6 for the planar Noh problem at ¢ = .73 on a grid of 800 zones.
Higher-order Godunov results are shown only. Closeups of the postshock and near wall
regions are shown.

31



rhoatt= 0.73000

800 zones

5 ‘ \ ‘ \ ‘ ‘

—— Lagrange plus remap

—— Lagrange plus remap, standard q

h.o.g., viscosity bc

4 [ 4 -

—— h.o.g., exact Riemann solver

—————————— h.o.g., exact, cfl=.5, Lapidus off
3 [ -
2 [ -
1 [ -
0 L | L | L | L | L | L
-0.1 0.1 0.3 0.5 0.7 0.9 11
5 T T T T

—— Lagrange plus remap

—— Lagrange plus remap, standard q

h.o.g., viscosity bc

4 '

—— h.o.g., exact Riemann solver

—————————— h.o.g., exact, cfl=.5, Lapidus off
3 [
2 [
1
0 L | L | L | L | L
0.72 0.73 0.74 0.75 0.76 0.77

Figure 19: Density at ¢ = 6 for the planar Noh problem at ¢ = .73 on a grid of 800 zones.
Lagrange plus remap and higher-order Godunov results are shown. The full problem domain
and a closeup of the shock region are shown.

32



—— Lagrange plus remap
4.05 r .
—— Lagrange plus remap, standard g
h.o.g., viscosity bc
—— h.o.g., exact Riemann solver

403 - .. h.o.g., exact, cfl=.5, Lapidus off

VAR AP SRS
wﬁvﬁw VoV R

3.97 .
3.95 : : : : : : :
0.85 0.86 0.87 0.88 0.89
45 - —— Lagrange plus remap :
—— Lagrange plus remap, standard g
h.o.g., viscosity bc
—— h.o.g., exact Riemann solver
"""""" h.o.g., exact, cfl=.5, Lapidus off
4 e |
3.5 i
3 L | L |
0.98 0.99 1

Figure 20: Density at ¢ = 6 for the planar Noh problem at ¢ = .73 on a grid of 800 zones.
Lagrange plus remap and higher-order Godunov results are shown. Closeups of the postshock
and near wall regions are shown.
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pute overshoots at the contact, the higher-order Godunov method the least, while the two
Lagrangian methods show large oscillations there. On the 1440 zone grid, the higher-order
Godunov results best match the exact solution, although they do slightly underestimate the
speed of the shock and show a small undershoot at the contact discontinuity. The Lagrange
plus remap scheme and the staggered grid Lagrange scheme both slighty overestimate the
speed of the shock. The Lagrange plus remap scheme computes a large but relatively nar-
row overshoot in the density at contact discontinuity. The staggered grid Lagrange scheme
spreads this overshoot over a wider region. The higher-order Godunov Lagrange scheme
shows the worse results. It overestimates the speed of the shock and spreads the overshoot
at the contact over the entire region between the contact and the shock.

Discussion, conclusions, and future work

The results in the previous section demonstrate that a staggered grid, Lagrange plus
remap, artificial viscosity scheme can compute results for Eulerian shock hydrodynamics
that are comparable to those of a cell centered, direct Eulerian, higher order Godunov
method. Moreover, they show that certain features of the current Lagrange plus remap
scheme contribute to its improved performance relative the method examined by Woodward
and Colella (1984). Three critical features in particular are the use of the monotonic artificial
viscosity in the Lagrange step and the use of a van Leer (or comparable) limiter in conjunction
with the separate advection of internal and kinetic energies in the remap step.

Additional considerations appear to be important in the calculation of flows with shear
instabilities. Of the three problems examined by Woodward and Colella (1984) the double
Mach reflection problem is the only such flow. The results there, however, do not show the
rollups induced by a Kelvin-Helmholtz instability in the first contact discontinuity or the wall
jet because the calculation is not adequately resolved. In this paper we examined two such
flows, the shock reflection as well as the shock refraction problems, at sufficient resolution to
see the Kelvin-Helmholtz instability. In the case of the reflection problem, we saw that the
instability was nearly completely suppressed if the hourglass filter was used in the Lagrange
step and partially suppressed if a spatially split advection scheme was used in the remap
step. We suspect that the hourglass filter may damp physical as well as spurious numerical
vorticity, while the split advection scheme may introduce extra numerical dissipation. On the
other hand, for the refraction problem we saw no such suppression with the split remap and
only moderate suppression with the hourglass filter. We also saw for the reflection problem
that using milder filtering of the hourglass modes resulted in less suppression of the interface
rollups. These results are not definitive; in particular, the split advection scheme used here
is only one of a number of possible implementations. Nevertheless, they do suggest that
one should exercise caution in the use of hourglass filters and split advection schemes for
problems in which shear instabilities are important.

The results for several of the test problems warrant additional discussion. The interacting
blast wave results suggest that at least in problems with strong shocks it is necessary to fully
conserve in the vicinity of the shock in order to capture the correct shock speed, although
it is not necessary in smooth regions of the flow. They also demonstrate that in some cases
the Lagrange plus remap approach can resolve contact discontinuities much better than the
higher-order Godunov approach. The double Mach reflection results show that some time-
centering details of the predictor-corrector formulation in the Lagrange step are not overly
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Figure 22: Internal energy at ¢ = 6 for the LeBlanc shock tube on grids of 180 and 1440
zones. Closeup of results shown in Figure 21.
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critical, at least in the context of gas dynamics. The shock refraction problem results are
somewhat inconclusive. They do show that the Lagrange plus remap and the higher-order
Godunov algorithms can compute similar results for refractions of the MRR type for strong
incident shocks at fast-slow gas interfaces. The relative differences of the results seen near
the triple point are significant, however, and require further investigation. The Noh problem
computations are interesting in that the Lagrange plus remap scheme produced accurate
results without any algorithmic adjustments while the higher-order Godunov scheme did
require modifications, albeit relatively simple ones. The LeBlanc problem, on the other
hand, is the one problem for which the Lagrange plus remap scheme did not fare as well
as the higher-order Godunov method. The problems experienced by our Lagrange plus
remap scheme, in particular the density overshoots at the contact discontinuity, do seem to
originate in the Lagrange step. Moreover, at least for the two shock capturing methodologies
we are considering, these problems are independent of the numerical approach. Specifically,
difficulties stemming from a failure to adequately mass match the zoning can be seen in
a pure Lagrangian calculation regardless of whether an artificial viscosity or a Godunov
approach is used for shock capturing. Conversely, it is the direct Eulerian approach, and
not the higher-order Godunov methodology itself, that enables the direct Eulerian Godunov
scheme here to compute accurate results for the LeBlanc problem.

The work in this paper was done in conjunction with the research and development of a
structured grid local adaptive mesh refinement scheme (Berger and Colella, 1989) suitable
for use with a staggered grid ALE methodology. Part of this work will entail implementation
of the Lagrange plus remap algorithm in two-dimensional cylindrical coordinates as well as in
three-dimensions. As that development proceeds, we will further our comparison of higher-
order Godunov and staggered grid Lagrange plus remap schemes. We will also further the
comparison to problems with interface instabilities other than those of the Kelvin-Helmholtz

type.
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